32 views
in Algebra by
$\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$ হলে, দেখাও যে, $\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)=\left(ab+bc+cd\right)^2$

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
দেওয়া আছে,
$\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$

মনে করি,
$\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k$

এখন,
$\frac{a}{b}=k$ বা, $a=bk$

এবং $\frac{b}{c}=k$ বা, $b=ck$

এবং $\frac{c}{d}=k$ বা, $c=dk$

বামপক্ষ,
$\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)$

$=\left\{(bk)^2+(ck)^2+(dk)^2\right\}\left(b^2+c^2+d^2\right)$

$=\left(b^2k^2+c^2k^2+d^2k^2\right)\left(b^2+c^2+d^2\right)$

$=k^2\left(b^2+c^2+d^2\right)\left(b^2+c^2+d^2\right)$

$=k^2\left(b^2+c^2+d^2\right)^2$

ডানপক্ষ,
$\left(ab+bc+cd\right)^2$

$=\left(bk \cdot b+ck \cdot c+dk \cdot d\right)^2$

$=\left(b^2k+c^2k+d^2k\right)^2$

$=\left\{k\left(b^2+c^2+d^2\right)\right\}^2$

$=k^2\left(b^2+c^2+d^2\right)^2$

$\therefore$ বামপক্ষ$=$ডানপক্ষ

অর্থাৎ $\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)$$=\left(ab+bc+cd\right)^2$

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...