22 views
in Algebra by
$x=\frac{4ab}{a+b}$ হলে, দেখাও যে, $\frac{x+2a}{x-2a}+\frac{x+2b}{x-2b}=2$, $a\neq b$

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
দেওয়া আছে,
$x=\frac{4ab}{a+b}$

বা, $\frac{x}{2a}=\frac{4ab}{\left(a+b\right)\cdot2a}$

[উভয় পাশে $2a$ দ্বারা ভাগ করে]

বা, $\frac{x}{2a}=\frac{2b}{\left(a+b\right)}$

বা, $\frac{x+2a}{x-2a}=\frac{2b+\left(a+b\right)}{2b-\left(a+b\right)}$

[যোজন-বিয়োজন করে]

বা, $\frac{x+2a}{x-2a}=\frac{2b+a+b}{2b-a-b}$

$\therefore \frac{x+2a}{x-2a}=\frac{3b+a}{b-a}$ -----($i$)

আবার,
$x=\frac{4ab}{a+b}$

বা, $\frac{x}{2b}=\frac{4ab}{\left(a+b\right)\cdot2b}$

[উভয় পাশে $2b$ দ্বারা ভাগ করে]

বা, $\frac{x}{2b}=\frac{2a}{\left(a+b\right)}$

বা, $\frac{x+2b}{x-2b}=\frac{2a+\left(a+b\right)}{2a-\left(a+b\right)}$

[যোজন-বিয়োজন করে]

বা, $\frac{x+2b}{x-2b}=\frac{2a+a+b}{2a-a-b}$

$\therefore \frac{x+2b}{x-2b}=\frac{3a+b}{a-b}$ -----($ii$)

($i$) নং ও ($ii$) নং সমীকরণ যোগ করে
$\frac{x+2a}{x-2a}+\frac{x+2b}{x-2b}=\frac{3b+a}{b-a}+\frac{3a+b}{a-b}$

বা, $\frac{x+2a}{x-2a}+\frac{x+2b}{x-2b}=\frac{3b+a}{b-a}-\frac{3a+b}{b-a}$

বা, $\frac{x+2a}{x-2a}+\frac{x+2b}{x-2b}=\frac{\left(3b+a\right)-\left(3a+b\right)}{b-a}$

বা, $\frac{x+2a}{x-2a}+\frac{x+2b}{x-2b}=\frac{3b+a-3a+b}{b-a}$

বা, $\frac{x+2a}{x-2a}+\frac{x+2b}{x-2b}=\frac{2b-2a}{b-a}$

বা, $\frac{x+2a}{x-2a}+\frac{x+2b}{x-2b}=\frac{2\left(b-a\right)}{b-a}$

$\therefore \frac{x+2a}{x-2a}+\frac{x+2b}{x-2b}=2$ [দেখানো হলো]

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...