36 views
in Algebra by
$\frac{a^2+b^2}{b^2+c^2}=\frac{\left(a+b\right)^2}{\left(b+c\right)^2}$ হলে, দেখাও যে, $a$, $b$, $c$ ক্রমিক সমানুপাতী।

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
দেওয়া আছে,
$\frac{a^2+b^2}{b^2+c^2}=$$\frac{\left(a+b\right)^2}{\left(b+c\right)^2}$

বা, $\frac{\left(b+c\right)^2}{b^2+c^2}=$$\frac{\left(a+b\right)^2}{a^2+b^2}$

বা, $\frac{b^2+c^2+2bc}{b^2+c^2}=$$\frac{a^2+b^2+2ab}{a^2+b^2}$

বা, $\frac{b^2+c^2+2bc-\left(b^2+c^2\right)}{b^2+c^2}=$$\frac{a^2+b^2+2ab-\left(a^2+b^2\right)}{a^2+b^2}$

বা, $\frac{b^2+c^2+2bc-b^2-c^2}{b^2+c^2}=$$\frac{a^2+b^2+2ab-a^2-b^2}{a^2+b^2}$

বা, $\frac{2bc}{b^2+c^2}=$$\frac{2ab}{a^2+b^2}$

বা, $\frac{2bc}{b^2+c^2}\times\frac{1}{2b}=$$\frac{2ab}{a^2+b^2}\times\frac{1}{2b}$

বা, $\frac{c}{b^2+c^2}=$$\frac{a}{a^2+b^2}$

বা, $c\left(a^2+b^2\right)=$$a\left(b^2+c^2\right)$

বা, $a^2c+b^2c=$$ab^2+ac^2$

বা, $a^2c-ac^2=ab^2-b^2c$

বা, $ac\left(a-c\right)=b^2\left(a-c\right)$

বা, $ac=\frac{b^2\left(a-c\right)}{\left(a-c\right)}$

বা, $ac=b^2$

বা, $a\cdot c=b\cdot b$

বা, $\frac{a}{b}=\frac{b}{c}$

$\therefore a:b=b:c$

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...