27 views
in Algebra by
$\frac{x}{b+c}=\frac{y}{c+a}=\frac{z}{a+b}$ হলে, প্রমাণ কর যে, $\frac{a}{y+z-x}=\frac{b}{z+x-y}=\frac{c}{x+y-z}$।

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
দেওয়া আছে,
$\frac{x}{b+c}=\frac{y}{c+a}=\frac{z}{a+b}$

মনে করি,
$\frac{x}{b+c}=\frac{y}{c+a}=\frac{z}{a+b}=k$

এখানে,
$\frac{x}{b+c}=k$

বা, $x=k(b+c)$

$\therefore x=kb+kc$

এবং
$\frac{y}{c+a}=k$

বা, $y=k(c+a)$

$\therefore y=kc+ka$

এবং
$\frac{z}{a+b}=k$

বা, $z=k(a+b)$

$\therefore z=ka+kb$

প্রথম রাশি,
$\frac{a}{y+z-x}$

$=\frac{a}{\left(kc+ka\right)+\left(ka+kb\right)-\left(kb+kc\right)}$

$=\frac{a}{kc+ka+ka+kb-kb-kc}$

$=\frac{a}{2ka}$

$=\frac{1}{2k}$

মধ্য রাশি,
$\frac{b}{z+x-y}$

$=\frac{b}{\left(ka+kb\right)+\left(kb+kc\right)-\left(kc+ka\right)}$

$=\frac{b}{ka+kb+kb+kc-kc-ka}$

$=\frac{b}{2kb}$

$=\frac{1}{2k}$

শেষ রাশি,
$\frac{c}{x+y-z}$

$=\frac{c}{\left(kb+kc\right)+\left(kc+ka\right)-\left(ka+kb\right)}$

$=\frac{c}{kb+kc+kc+ka-ka-kb}$

$=\frac{c}{2kc}$

$=\frac{1}{2k}$

সুতরাং দেখা যাচ্ছে প্রতি ক্ষেত্রেই মান একই।

অর্থাৎ, $\frac{a}{y+z-x}=\frac{b}{z+x-y}=\frac{c}{x+y-z}$

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...