27 views
in Algebra by
$\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}$ হলে, প্রমাণ কর যে, $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$।

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
দেওয়া আছে,
$\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}$

মনে করি,
$\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=k$

সুতরাং,

$\frac{bz-cy}{a}=k$

$\therefore bz-cy=ka$ -----($i$)

এবং,
$\frac{cx-az}{b}=k$

$\therefore cx-az=kb$ -----($ii$)

এবং,
$\frac{ay-bx}{c}=k$

$\therefore ay-bx=kc$ -----($iii$)

($i$), ($ii$) ও ($iii$) নং সমীকরণকে যথাক্রমে $x$, $y$, $z$ গুণকরে ও অতঃপর যোগ করে,
$(bxz-cxy)+(cxy-ayz)+(ayz-bxz)$$=kax+kby+kcz$

বা, $bxz-cxy+cxy-ayz+ayz-bxz$$=kax+kby+kcz$

বা, $0=k(ax+by+cz)$

বা, $k(ax+by+cz)=0$

বা, $k=\frac{0}{(ax+by+cz)}$

$\therefore k=0$

$k=0$, ($i$) নং সমীকরণে বসিয়ে,
$bz-cy=ka$

বা, $bz-cy=0 \cdot a$

বা, $bz-cy=0$

বা, $bz=cy$

$\therefore \frac{z}{c}=\frac{y}{b}$ -----($iv$)

$k=0$, ($ii$) নং সমীকরণে বসিয়ে,
$cx-az=kb$

বা, $cx-az=0 \cdot b$

বা, $cx-az=0$

বা, $cx=az$

$\therefore \frac{x}{a}=\frac{z}{c}$ -----($v$)

($iv$) নং ও ($v$) নং সমীকরণ বিবেচনা করে পাই,

$\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$ [প্রমাণিত]

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...