27 views
in Algebra by
retagged by
$\frac{x}{xa+yb+zc}=$$\frac{y}{ya+zb+xc}=$$\frac{z}{za+xb+yc}$ এবং $x+y+z \neq 0$ হলে, দেখাও যে, প্রতিটি অনুপাত $=\frac{1}{a+b+c}$।

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
দেওয়া আছে,
$\frac{x}{xa+yb+zc}=$$\frac{y}{ya+zb+xc}=$$\frac{z}{za+xb+yc}$

ধরি, প্রতিটি অনুপাতের মান $k$

সুতরাং,
$\frac{x}{xa+yb+zc}=k$ বা, $k(xa+yb+zc)=x$ ---($i$)

$\frac{y}{ya+zb+xc}=k$ বা, $k(ya+zb+xc)=y$ ---($ii$)

$\frac{z}{za+xb+yc}=k$ বা, $k(za+xb+yc)=z$ ---($iii$)

সমীকরণ ($i$), ($ii$) ও ($iii$) যোগ করে পাই,
$k(xa+yb+zc)+k(ya+zb+xc)+k(za+xb+yc)=x+y+z$

$k\left\lbrace(xa+yb+zc)+(ya+zb+xc)+(za+xb+yc)\right\rbrace=x+y+z$

$k\left(xa+yb+zc+ya+zb+xc+za+xb+yc\right)=x+y+z$

$k\left(xa+ya+za+xb+yb+zb+xc+yc+zc\right)=x+y+z$

$k\left\lbrace a\left(x+y+z\right)+b\left(x+y+z\right)+c\left(x+y+z\right)\right\rbrace=x+y+z$

$k\left(x+y+z\right)\left(a+b+c\right)=x+y+z$

$k=\frac{\left(x+y+z\right)}{\left(x+y+z\right)\left(a+b+c\right)}$

$k=\frac{1}{\left(a+b+c\right)}$

যেহেতু প্রতিটি অনুপাতের মান $k$ ধরা হয়েছে এবং $k=\frac{1}{\left(a+b+c\right)}$

সুতরাং প্রতিটি অনুপাতের মানও $\frac{1}{\left(a+b+c\right)}$ [দেখানো হলো]

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...