31 views
in Algebra by
যদি $(a+b+c)p=$$(b+c-a)q=$$(c+a-b)r=$$(a+b-c)s$ হয়, তবে প্রমাণ কর যে, $\frac{1}{q}+\frac{1}{r}+\frac{1}{s}=\frac{1}{p}$।

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
দেওয়া আছে,
$(a+b+c)p=(b+c-a)q=$$(c+a-b)r=$$(a+b-c)s$

মনে করি,
$(a+b+c)p=(b+c-a)q=$$(c+a-b)r=$$(a+b-c)s=$$k$

সুতরাং,
$(a+b+c)p=k$ বা, $\frac{1}{p}=\frac{a+b+c}{k}$

$(b+c-a)q=k$ বা, $\frac{1}{q}=\frac{b+c-a}{k}$

$(c+a-b)r=k$ বা, $\frac{1}{r}=\frac{c+a-b}{k}$

$(ba+b-c)s=k$ বা, $\frac{1}{s}=\frac{a+b-c}{k}$

Left Hand Side,
$\frac{1}{q}+\frac{1}{r}+\frac{1}{s}$

$=\frac{b+c-a}{k}+\frac{c+a-b}{k}+\frac{a+b-c}{k}$

$=\frac{(b+c-a)+(c+a-b)+(a+b-c)}{k}$

$=\frac{b+c-a+c+a-b+a+b-c}{k}$

$=\frac{a+b+c}{k}$

$=\frac{1}{p}$

$=$ Right Hand Side

$\therefore$ Left Hand Side $=$ Right Hand Side

অর্থাৎ, $\frac{1}{q}+\frac{1}{r}+\frac{1}{s}=\frac{1}{p}$ [দেখানো হলো]

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...