60 views
in Algebra by
সমাধান সেট নির্ণয় কর: $\frac{m}{m-x}+\frac{n}{n-x}=\frac{m+n}{m+n-x}$

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
$\frac{m}{m-x}+\frac{n}{n-x}=$$\frac{m+n}{m+n-x}$

বা, $\frac{m}{m-x}+\frac{n}{n-x}=$$\frac{m}{m+n-x}+\frac{n}{m+n-x}$

বা, $\frac{m}{m-x}-\frac{m}{m+n-x}=$$\frac{n}{m+n-x}-\frac{n}{n-x}$

বা, $\frac{m\left(m+n-x\right)-m\left(m-x\right)}{\left(m-x\right)\left(m+n-x\right)}=$$\frac{n\left(n-x\right)-n\left(m+n-x\right)}{\left(m+n-x\right)\left(n-x\right)}$

বা, $\frac{m^2+mn-mx-m^2+mx}{\left(m-x\right)\left(m+n-x\right)}=$$\frac{n^2-nx-mn-n^2+nx}{\left(m+n-x\right)\left(n-x\right)}$

বা, $\frac{mn}{\left(m-x\right)\left(m+n-x\right)}=$$\frac{-mn}{\left(m+n-x\right)\left(n-x\right)}$

বা, $\frac{1}{\left(m-x\right)\left(m+n-x\right)}=$$\frac{-1}{\left(m+n-x\right)\left(n-x\right)}$
[ উভয় পক্ষে $mn$ দ্বারা ভাগ করে ]

বা, $\frac{1}{\left(m-x\right)}=$$\frac{-1}{\left(n-x\right)}$
[ উভয় পক্ষে $\left(m+n-x\right)$ দ্বারা গুণ করে ]

বা, $-1\left(m-x\right)=1\left(n-x\right)$

বা, $-m+x=n-x$

বা, $x+x=n+m$

বা, $2x=m+n$

$\therefore x=\frac{m+n}{2}$

সুতরাং নির্ণেয় সমাধন সেট $S=\left\{\frac{m+n}{2}\right\}$ [Answer]

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...