Left Hand Side
$=\frac{sinA}{1-cosA}+\frac{1-cosA}{sinA}$
$=\frac{sin^2A+(1-cosA)^2}{sinA(1-cosA)}$
$=\frac{sin^2A+(1^2-2 \cdot 1 \cdot cosA + cos^2A)}{sinA(1-cosA)}$
$=\frac{sin^2A+1-2 cosA + cos^2A}{sinA(1-cosA)}$
$=\frac{sin^2A+cos^2A +1-2 cosA}{sinA(1-cosA)}$
$=\frac{1+1-2 cosA}{sinA(1-cosA)}$
$=\frac{2-2 cosA}{sinA(1-cosA)}$
$=\frac{2(1-cosA)}{sinA(1-cosA)}$
$=\frac{2}{sinA}$
$=2 \cdot \frac{1}{sinA}$
$=2 \cdot cosecA$
$=$ Right Hand Side