$2\log_{10}5 + \log_{10}36 - \log_{10}9$
$=\log_{10}5^2+\log_{10}6^2-\log_{10}3^2$
$=\log_{10}(5^2 \times 6^2 \div 3^2)$
$=\log_{10}(25 \times 36 \div 9)$
$=\log_{10} \left(25 \times 36 \times \frac{1}{9}\right)$
$=\log_{10} \left(25\times\overset4{\bcancel{36}}\times\frac1{\bcancel9}\right)$
$=\log_{10}100$
$=\log_{10}10^2$
$=2\log_{10}10$
$=2 \times 1$
$=2$