60 views
in Algebra by
সরল কর: $\log_7\left(\sqrt[5]{7}\cdot\sqrt7\right)-\log_3\sqrt[3]{3}+\log_42$

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
$\log_7\left(\sqrt[5]{7}\cdot\sqrt7\right)-\log_3\sqrt[3]{3}+\log_42$

$=\log_7\left(\sqrt[5]{7}\cdot\sqrt7\right)-\log_3\sqrt[3]{3}+\log_4\sqrt4$

$=\log_7\left(7^{\frac15}\cdot7^{\frac12}\right)-\log_33^{\frac13}+\log_44^{\frac12}$

$=\log_77^{\left(\frac15+\frac12\right)}-\log_33^{\frac13}+\log_44^{\frac12}$

$=\left(\frac15+\frac12\right)\log_77-\frac13\log_33+\frac12\log_44$

$=\left(\frac15+\frac12\right)\cdot1-\frac13\cdot1+\frac12\cdot1$

$=\frac15+\frac12-\frac13+\frac12$

$=\frac{6+15-10+15}{30}$

$=\frac{26}{30}$

$=\frac{13\times2}{15\times2}$

$=\frac{13}{15}$

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...