$\dfrac{2^{n+4}-4\cdot2^{n+1}}{2^{n+2}\div2}$
$=\dfrac{2^{n}\cdot2^4-4\cdot2^{n}\cdot2^1}{2^{n+2}\div2^1}$
$=\dfrac{2^{n}\left(2^4-4\cdot2\right)}{2^{n+2-1}}$
$=\dfrac{2^{n}\left(16-8\right)}{2^{n+1}}$
$=\dfrac{2^{n}\cdot8}{2^{n}\cdot2^1}$
$=\dfrac82$
$=4$ [Answer]