62 views
in Algebra by
প্রমাণ কর যে: $\left(\frac{x^{a}}{x^{b}}\right)^{\frac{1}{ab}}\cdot\left(\frac{x^{b}}{x^{c}}\right)^{\frac{1}{bc}}\cdot\left(\frac{x^{c}}{x^{a}}\right)^{\frac{1}{ca}}=1$

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
Left Hand Side,

$\left(\frac{x^{a}}{x^{b}}\right)^{\frac{1}{ab}}\cdot\left(\frac{x^{b}}{x^{c}}\right)^{\frac{1}{bc}}\cdot\left(\frac{x^{c}}{x^{a}}\right)^{\frac{1}{ca}}$

$=\left(x^{a-b}\right)^{\frac{1}{ab}}\cdot\left(x^{b-c}\right)^{\frac{1}{bc}}\cdot\left(x^{c-a}\right)^{\frac{1}{ca}}$

$=x^{\frac{a-b}{ab}}\cdot x^{\frac{b-c}{bc}}\cdot x^{\frac{c-a}{ca}}$

$=x^{\frac{a-b}{ab}+\frac{b-c}{bc}+\frac{c-a}{ca}}$

$=x^{\frac{c(a-b)+a(b-c)+b(c-a)}{abc}}$

$=x^{\frac{ac-bc+ab-ac+bc-ab}{abc}}$

$=x^{\frac{0}{abc}}$

$=x^0$

$=1$

$=$ Right Hand Side [Proved]
by

Rules Applied:

  • $\frac{a^{m}}{a^{n}}=a^{m-n}$
  • $\left(a^{m}\right)^{n}=a^{mn}$
  • $a^{m} \cdot a^{n}=a^{m+n}$
  • $a^{0}=1$

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...