Left Hand Side,
$\left(\frac{x^{a}}{x^{b}}\right)^{\frac{1}{ab}}\cdot\left(\frac{x^{b}}{x^{c}}\right)^{\frac{1}{bc}}\cdot\left(\frac{x^{c}}{x^{a}}\right)^{\frac{1}{ca}}$
$=\left(x^{a-b}\right)^{\frac{1}{ab}}\cdot\left(x^{b-c}\right)^{\frac{1}{bc}}\cdot\left(x^{c-a}\right)^{\frac{1}{ca}}$
$=x^{\frac{a-b}{ab}}\cdot x^{\frac{b-c}{bc}}\cdot x^{\frac{c-a}{ca}}$
$=x^{\frac{a-b}{ab}+\frac{b-c}{bc}+\frac{c-a}{ca}}$
$=x^{\frac{c(a-b)+a(b-c)+b(c-a)}{abc}}$
$=x^{\frac{ac-bc+ab-ac+bc-ab}{abc}}$
$=x^{\frac{0}{abc}}$
$=x^0$
$=1$
$=$ Right Hand Side [Proved]