49 views
in Algebra by
প্রমাণ কর যে: $\left(\frac{x^{a}}{x^{b}}\right)^{a+b}\cdot\left(\frac{x^{b}}{x^{c}}\right)^{b+c}\cdot\left(\frac{x^{c}}{x^{a}}\right)^{c+a}=1$

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
Left Hand Side
$=\left(\frac{x^{a}}{x^{b}}\right)^{a+b}\cdot\left(\frac{x^{b}}{x^{c}}\right)^{b+c}\cdot\left(\frac{x^{c}}{x^{a}}\right)^{c+a}$

$=\left(x^{a-b}\right)^{a+b}\cdot\left(x^{b-c}\right)^{b+c}\cdot\left(x^{c-a}\right)^{c+a}$

$=x^{\left(a-b\right)\left(a+b\right)}\cdot x^{\left(b-c\right)\left(b+c\right)}\cdot x^{\left(c-a\right)\left(c+a\right)}$

$=x^{\left(a^2-b^2\right)}\cdot x^{\left(b^2-c^2\right)}\cdot x^{\left(c^2-a^2\right)}$

$=x^{\left(a^2-b^2\right)+\left(b^2-c^2\right)+\left(c^2-a^2\right)}$

$=x^{a^2-b^2+b^2-c^2+c^2-a^2}$

$=x^0$

$=1$

$=$ Right Hand Side [Proved]
by

Rules Applied:

  • $\frac{a^{m}}{a^{n}}=a^{m-n}$
  • $\left(a^{m}\right)^{n}=a^{mn}$
  • $(a+b)(a-b)=a^2-b^2$
  • $a^{0}=1$

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...