71 views
in Algebra by
প্রমাণ কর যে: $\left(\frac{x^{p}}{x^{q}}\right)^{p+q-r}\cdot\left(\frac{x^{q}}{x^{r}}\right)^{q+r-p}$$\cdot\left(\frac{x^{r}}{x^{p}}\right)^{r+p-q}$$=1$

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
Left Hand Side,

$\left(\frac{x^{p}}{x^{q}}\right)^{p+q-r}\cdot\left(\frac{x^{q}}{x^{r}}\right)^{q+r-p}$$\cdot\left(\frac{x^{r}}{x^{p}}\right)^{r+p-q}$

$=\left(x^{p-q}\right)^{p+q-r}\cdot\left(x^{q-r}\right)^{q+r-p}$$\cdot\left(x^{r-p}\right)^{r+p-q}$

$=x^{\left(p-q\right)\left(p+q-r\right)}\cdot x^{\left(q-r\right)\left(q+r-p\right)}$$\cdot x^{\left(r-p\right)\left(r+p-q\right)}$

$=x^{\left(p-q\right)\left(p+q\right)-r\left(p-q\right)}\cdot x^{\left(q-r\right)\left(q+r\right)-p\left(q-r\right)}$$\cdot x^{\left(r-p\right)\left(r+p\right)-q\left(r-p\right)}$

$=x^{p^2-q^2-pr+qr}\cdot x^{q^2-r^2-pq+pr}\cdot x^{r^2-p^2-qr+pr}$

$=x^{(p^2-q^2-pr+qr)+(q^2-r^2-pq+pr)+(r^2-p^2-qr+pr)}$

$=x^{p^2-q^2-pr+qr+q^2-r^2-pq+pr+r^2-p^2-qr+pr}$

$=x^{0}$

$=1$

$=$ Right Hand Side [Proved]
by

Rules Applied:

  • $\frac{a^{m}}{a^{n}}=a^{m-n}$
  • $\left(a^{m}\right)^{n}=a^{mn}$
  • $a^{m} \cdot a^{n}=a^{m+n}$
  • $a^{0}=1$

Related questions

9.4k questions

9.5k answers

122 comments

24 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...