92 views
in Algebra by
$a=\sqrt6+\sqrt5$ হলে, $\frac{a^6-1}{a^3}$ এর মান নির্ণয় কর।

1 Answer

0 like 0 dislike
by
selected by
 
Best answer
দেওয়া আছে,
$a=\sqrt6+\sqrt5$ ------ ($i$)

বা, $\frac{1}{a}=\frac{1}{\sqrt6+\sqrt5}$

বা, $\frac{1}{a}=\frac{\left(\sqrt6-\sqrt5\right)}{\left(\sqrt6+\sqrt5\right)\left(\sqrt6-\sqrt5\right)}$
[ ডানপক্ষের হর ও লবকে $\left(\sqrt6-\sqrt5\right)$ দ্বারা গুণ করে ]

বা, $\frac{1}{a}=\frac{\left(\sqrt6-\sqrt5\right)}{\left(\sqrt6\right)^2-\left(\sqrt5\right)^2}$

বা, $\frac{1}{a}=\frac{\left(\sqrt6-\sqrt5\right)}{6-5^{}}$

বা, $\frac{1}{a}=\frac{\left(\sqrt6-\sqrt5\right)}{1}$

$\therefore \frac{1}{a}=\sqrt6-\sqrt5$ ------ ($ii$)

($i$) নং সমীকরণ থেকে ($ii$) নং সমীকরণ বিয়োগ করে,

$a-\frac{1}{a}=\left(\sqrt6+\sqrt5\right)-\left(\sqrt6-\sqrt5\right)$

বা, $a-\frac{1}{a}=\left(\sqrt6+\sqrt5\right)-\left(\sqrt6-\sqrt5\right)$

বা, $a-\frac{1}{a}=\sqrt6+\sqrt5-\sqrt6+\sqrt5$

$\therefore a-\frac{1}{a}=2\sqrt5$ [Answer]

Related questions

10.4k questions

10.5k answers

122 comments

26 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...