69 views
in Algebra by

$x-\frac{1}{x}=\sqrt3$ যেখানে $x\neq0$,

  • (ক) প্রমাণ কর যে, $x^2-\sqrt3x=1$
  • (খ) প্রমাণ কর যে, $23\left(x^2+\frac{1}{x^2}\right)=5\left(x^4+\frac{1}{x^4}\right)$
  • (গ) $x^6+\frac{1}{x^6}$ এর মান নির্ণয় কর।

1 Answer

0 like 0 dislike
by
selected by
 
Best answer

(ক) নং এর সমাধান

দেওয়া আছে,
$x-\frac{1}{x}=\sqrt3$

বা, $\frac{x^2-1}{x}=\sqrt3$

বা, $x^2-1=\sqrt3x$

$\therefore x^2-\sqrt3x=1$


(খ) নং এর সমাধান

এখানে,

$x^2+\frac{1}{x^2}$

$=x^2+\left(\frac{1}{x}\right)^2$

$=\left(x-\frac{1}{x}\right)^2$$+2\cdot x\cdot\frac{1}{x}$

$=\left(\sqrt3\right)^2+2\frac{}{}$

$=3+2$

$=5$

বামপক্ষ,
$23\left(x^2+\frac{1}{x^2}\right)$

$=23\times5$

$=115$

ডানপক্ষ,

$5\left(x^4+\frac{1}{x^4}\right)$

$=5\left\lbrace\left(x^2\right)^2+\left(\frac{1}{x^2}\right)^2\right\rbrace$

$=5\left\lbrace\left(x^2+\frac{1}{x^2}\right)^2-2.x^2\cdot\frac{1}{x^2}\right\rbrace$

$=5\left(5^2-2\right)$

$=5\left(25-2\right)$

$=5\times23$

$=115$

সুতরাং, প্রদত্ত মান অনুসারে $23\left(x^2+\frac{1}{x^2}\right)=5\left(x^4+\frac{1}{x^4}\right)$ [Proved]


(গ) নং এর সমাধান

প্রদত্ত রাশি,
$x^6+\frac{1}{x^6}$

$=\left(x^2\right)^3+\left(\frac{1}{x^2}\right)^3$

$=\left(x^2+\frac{1}{x^2}\right)^3$$-3\cdot x^2\cdot\frac{1}{x^2}\left(x^2+\frac{1}{x^2}\right)$

$=5^3-3\times5$
[ (খ) নং হতে মান বসিয়ে ]

$=125-15$

$=110$ [Answer]

Related questions

10.4k questions

10.5k answers

122 comments

26 users

Welcome to QnAfy !

Ask questions, find answers, and spread the light of knowledge like the sun. On QnAfy, only registered users can post questions and answers.

If you are a teacher or student, you may register using your own name, your school/coaching center’s name, or your website’s name to actively contribute by asking or answering questions. This will help increase your or your institution’s visibility, and in the case of a website, it will boost your backlink profile as well.

So, Register Now

fb Group | fb Page
WhatsApp Message
Join Telegram Group

QnAfy – Where curiosity meets clarity.

Categories

For the best experience with math, please rotate your mobile to landscape mode or use a tablet, laptop, or PC for optimal viewing.
...